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ABSTRACT

This paper derives a feedback control f(t), 1f(t)E 4 r, r > 0, which

du
forces the infinite dimensional control system - = Au + Ef, u(0) = u0 c H

to have the asymptotic behavior u(t) + 0 as t + - in H. Here A is the

infinitesimal generator of a CO semigroup of contractions eAt on a real

Hilbert space H and B is a bounded linear operator mapping a Hilbert space

of controls E into H. An application to the boundary feedback control of a

vibrating beam is provided in detail and an application to the stabilization

of the NASA Spacecraft Control Laboratory is sketched.
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1. Introduction
iI

fn this paper we consider,5the feedback stablization of a linear control

system in an infinite dimensional state space. However unlike the standard

feedback control problem where the goal is to find a linear feedback control

law, we restrict ourselves to the case where the controls f(t) satisfy I a--a

priori constraint! lf(t)l E  r, r > 0. (Here the controls f(t) lie in a

Hilbert space and |N°E denotes the norm of E.) This contraint

necesitates a choice of a nonlinear feedback law which drives our state u(t)

to zero as t + -.

We-Ai4-k derive such a nonlinear feedback law based on energy stability
i

methods. The analysis of the asymptotic behavior of the state u(t) is based

on the theories of nonlinear evolution equations and contraction semigroups.

While an earlier paper--i treated a related problem of sub-optimal control

the results given here on feedback stabilization are new. A related optimal

control problem was considered by Barbu[21

A strong motivation for this paper has been the work of Hubbard and his

co-workers [3], [4] and Balakrishnan (5], [6]. In [3], (4] both laboratory
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experiments and computer simulations for the boundary feedback control of a

vibrating beam were described. In particular the problem of [3], (4]

corresponds to a special case of theory given here. Hence it is natural to

apply the abstract results of this paper to the concrete example of Hubbard et

al. This is done in the last section where it is shown that the feedback

control given here yields a stablizing feedback. Similarly the papers of

Balakrishnan [5], [6] provide a mathematical framework for the stabilization

problem of the NASA Spacecraft Control Laboratory Experiment (SCOLE). The

last section will also sketch the application of the theory given here to that

problem.

The paper is divided into seven sections after this one. Section 2

provides a statement of the abstract control problem and a hint at the method

of resolution. Section 3 gives some brief preliminary results on the theory

of dynamical systems and nonlinear semigroups. Section 4 uses the ideas of

Section 3 to exposite a theorem of Ball and Slemrod on the asymptotic behavior

of a class of nonlinear evolution equations. Section 5 applies this theorem

to yield one resolution of the feedback stabilization problem (Theorem 5.1).

Section 6 gives a survey of the results on asymptotic behavior of nonlinear

contraction semigroups and a useful theorem of Dafermos and Slemrod is

presented. Section 7 applies Dafermos and Slemrod's result to the feedback

stabilization problem in the case A has compact resolvent and E = R

(Theorem 7.1). Section 8 uses the earlier mentioned problems of Hubbard et al

and Balakrishnan as illustrative examples. A"

We note that a good reference for the ideas on nonlinear semigroups and

asymptotic behavior is the monograph of A. Haraux [7]. Many of the V

propositions used here may be found there. In addition numerous examples

illustrating the nonlinear semigroup theory are contained there as well.

-2-
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2. The control problem

Let H be a real Hilbert space with inner product <0,.> and norm R.

and let E be a second real Hilbert space with inner product (°,°) and norm

|01 E" Also let A be the infinitesimal generator of a linear CO semigroup

of contractions on H denoted by eAt. (In particular we know e Atu01

|u 0 1 for all u 0 c H and <A#,#> 4 0 for all c c D(A).) Finally let B

be a bounded linear operator from E to H.

We consider the abstract control system

du
dt Au + Bf , (2.1)

u(O) - u0 c H • (2.2)

Our goal is to find a feedback control

f(t) - K(u(t)) (2.3)

satisfying the constraint

Nfl E < r, r > 0 , (2.4)

which will yield u - 0 globally asymptotically stable in some sense.

To do this first formally compute the time rate of change of the

"energy":

I d WWI 2 <Au,u> + <Bf,u>
2 t utH

(2.5)

(f,B u)

Here we have used the fact <Au,u> 4 0. In order to force energy decay yet

satisfy the constraint (2.3) we use a saturating control law as suggested in

the work of Gutman E8] for finite dimensional systems, i.e. we set

(u) _ _- u if IBulE 1  r
IB ulE

NB uN1 E(2.6)

M -B u if IS u| < r

-3-



Notice K(u) is continuous as a function of u and that the desired energy,

dissipation is obtained:

1 d 12 * *
SIu(t)l 2 -riB ul if IB ulE P r

i t E E
(2.7)

* 2 *
-1B ulE if 1B ulE < r

In the next section we will analyze (2.1) with feedback f(t) 1 K(u(t))

and give sufficient conditions for its successful implementation.

3. Preliminary results on nonlinear semigrouns

Definitions. Let H be a real Hilbert space. A (generally nonlinear)

semigroup T(t) on H is a family of continuous maps T(t) : H + H, t C R+ ,

satisfying (i) T(O) - identity, (ii) T(t+s) - T(t)T(s), for all t, s c se.

If in addition IT(t)o - T(t)*l 4 I0-*I for all c, c H, t o 0, T(t) is

called a contraction semigroup.

For * £ H define the positive orbit through * by 0+(+) - U te+T(t) .

The w-limit set of 0 is the (possibly empty) set w(*) c {J £ H; there

exists a sequence tn + a as n + - such that T(tn) + as n + in. The

weak w-limit set of is the (possibly empty) set given by ww(o) { H;

there exists a sequence tn + w as n + c such that T(tn)o-II as n + i}.

(Here the symbol -1 denotes weak convergence in H.)

As subset C of H is said to be positively invariant if T(t)C C C

for all t c R, and invariant if T(t)C = C for all t c R+.

Theorem 3.1. (1) If. .O() is precompact,1Jhen w(o) is a nonempty, invariant

set in H. (ii) If each T(t) is sequentially weakly continuous on H (i.e.

T(t)#n-b T(t) is n--A f) then 0+ () bounded implies ww(o) is a

nonempty, invariant set in H.

-4-



Proof. (i) The proof is a direct consequence of Prop. 2.2 in Dafermos (9].

(ii) Since 0*(*) belongs to a sequentially weakly compact set in H, w (,)

is non-empty. Furthermore, since H is separable this weakly compact set may

be regarded as a compact set in a metric space induced by the weak topology

(see Ounford and Schwartz (10]). The result again follows from Prop. 2.2 in

Dafermos [9].

Hidden in Theorem 3.1 is the essence of this paper. Namely that in the

study of the feedback control system described in Section 2 we may need to

use, under different circumstances, either part i) or part (ii) of Theorem

3.1. Roughly the idea is that in the study of nonlinear semigroups of

"parabolic" type and nonlinear contraction semigroups of "hyperbolic" type

sufficient conditions have been given for 0 +() to be precompact and hence

a( ) to be nonempty (see Henry [11], Pazy [12], and Dafermos and Slemrod

(13]). On the other hand other applications may yield only the information

that 0+( ) is bounded and hence the main tool in studying the asymptotic

behavior of the feedback system will be the weak w-limit set.

4. Semilinear evolution equations

We recall some standard results on nonlinear evolution equations.

Consider the initial value problem

du - Aut) + F(u(t),t)
(4.1)

u(t 0 u0

where A is the infinitesimal generator of a linear CO semigroup eAt on a

real Hilbert space H with inner product <.,o> and norm I I, F H x R + H

is a given function and u0 c H is a given initial datum.

-5-
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Definition. Let ti > to. A function u C C([t0 ,tl];H) is a weak solution

of (4.1) on [t0,tI] if u(t0 ) = u0 , F(u(.),-) c"L1 (t0 ,tl;H) and if for each

w c D(A*) the function <u(t),w> is absolutely continuous on Et0 ,tl] and

satisfies
d *

F- <u(t),w> <u(t),A w> + <F(u(t),t),w>

for almost all t c [t0 ,tl1 .

Theorem 4.1. (cf. Balakrishnan (14], Ball [15]). Let t> • t0 . A function

u : [t0 ,t1] + H is a weak solution of (4.1) if and only if F(u(t),.) c

L 1(t0 ,t1 ;H) and u satisfies the variation of constants formula

u(t) = eAft-to) u0 + ft eA(t5)F(u(s),s)ds

for all t c [t0,t1].

The next result characterizes the asymptotic behavior of solutions to

(4.1) in an important special case. Also we assume system (3.1) is

autonomous, i.e. F(t,u) - F(u), to - 0.

Theorem 4.2. Let A generate a linear C0 semigroup eAt of contractions.

Let F : H + H satisfy

(i) F is locally Lipschitz

(ii) *n - i "> F(*n) + F(*) ,

(iii) (F(*),*> 4 0 for all c £ H.

Then (4.1) possesses a unique weak solution u(t;u0 ) on R+ for each u0  H.

Furthermore T(t)u0 - ult,u0) defines a semigroup on H, ww(u0) is a

nonempty invariant set for each u0 C H, and for each 41 C (w(Uo)

<T(t)*, F(T(t)*> - 0 for all t c 9+

If in addition, the only solution to the above equation is * - 0, then

u(t;u 0 ) -- 0 as t . -.

-6-



Proof. he proof is given in the paper of Ball and Slemrod [16]. A central

idea of the proof is the dissipative mechanism (iii) yields 0+(uo) bounded

and hence by Theorem 3.1 (ii) ww(u O ) is a nonempty, invariant set in H.

2The Liapunov functional Ou(t)I is then used to identify ww(uo) as noted

in the theorem.

5. Application of Theorem 4.2 to the stabilization problem

In this section we will discuss the asymptotic behavior of the feedback

system (2.1), (2.2), (2.5), (2.6), i.e. we will study the nonlinear

evolutionary system

du-. Au + G(u) , (5.1)
dt

u(O) =u 0  , (5.2)

with

rBBu *
G(u) * if RB uQ > r

B UIE (5.3)

- -BB u if IB ul < r

where A, B are as given in Section 2.

Theorem 5.1. For each u0 c H there is a unique weak solution u(t;u 0 ) =

T(t)u0 of (5.1), (5.2) defined for all t c with {0} a stable

equilibrium. If in addition B is compact and the only solution of the

equation

B*eAt * = 0 for all t c A* (5.4)

is -0, then u(t;u 0)-_ 0 as t + for all u0 c H.

-7-



Proof. First we note G(u) is globally Lipschitz continuous. For if u,,

u 2 c H and we set y, - B U, Y 2 -B u2 then ly11 c r and 1y21 > r

implies

rY
2EG(u I)-G(u2 )1 -C IllBIll 1y1 _-YI

~2E E

I lIBJIIN yH rr 1 '2 E - YIBI2

r NY1(NY I N2IE ) + Y NY1 1E - rY2I

4 1l1BIIl (NY I + flyl(lIE-r) + r(yl-y )Ir I E 2- 1 NE 1 1E2E

C IIlBII1(1y 2-y1IE + lyl - rI + Ey2-y 1)

S3111BIII Ny 2-y, 1

Here we have used I1"111 to denote the operator norm on the space of

bounded linear operators E + H. On the other hand when both Y1 ' Y2 have

norm greater than or equal to r

IY2 2]I ll l r B Y a- Y N I

IIIJI I 
,Y 

N 1By11E +y1 Y I Y N
r 'Y11 2 E - 11I1lE + YlIYIIE - 12IIE E

.L1.JJ.I (21yl1 I BY ~IEC l ls ly y, y-y )

2 E21E< 21 1ll I NY 2-Yll 1

Of course if NY 1 1 r, NY21 < r then IG(u1 ) 1 G(u2) IlBill Y,1-Y21E so
in general ,G(u ) - G(u )2 e 3lllIu,-u I or all

1IIBI 2u 1u 2 o l ul, u2 cH

Next note that the compactness of B implies G(*n) + G() if 4n- .
Also <G(O),*) - -riB *l if IB *I>r and <G(*),> - -IB 1 if IB B C r.

-8-
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So Theorem 4.2 applies and tells us that for each u0 c H aw(u 0 ) is a

nonempty invariant set in H and for each * c ww(uo)

<T(t)*,G(T(t)) = 0 for all t c R • (5.5)

But <T(t)*,G(T(t)*> = 0 for all t c R+ implies B T(t)* 0 for all

t C R+ which in turn tells us G(T(t)*) = 0 for all t C R+ . But then the

variation of constants formula of Theorem 4.1 shows for c ww(uo) that

T(t)* = eat . So (5.5) in fact implies (5.4) and hence ww(uo) = {0}. The

fact that {0} is stable trivially follows from the estimate

IT(t)u 0 4 Du 0I.

Corollary to Theorem 5.1. Consider the semilinear control system

dud= Au + Q(u) + Bf
dt (5.6)

u(O) u0  ,

where A, B are as in Theorem 5.1 and Q : H + H is nonlinear, locally

Lipschitzian, and dissipative i.e. <Q(u),u> 4 0 for all u C H. Then the

conclusion of Theorem 5.1 still holds where f(t) = K(u(t)).

Proof. If we insert f(t) = K(u(t)) into (5.6) our feedback system is

du--t Au + Q(u) + G(u) .
dt

But now that argument given in the proof of Theorem 5.1 applies verbatum

with G replaced by Q + G.

6. Asymptotic behavior of nonlinear contraction semigroups.

Let T(t) be a nonlinear semigroup of contractions on a real Hilbert

space H. We denote D(A) be the set of those * c H for which

T(h) -*
lim h
h+0 (hb-J

-9-
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exists and define

-A= lim h
hO+ 

h

It is well known from the theory of nonlinear contraction semigroups

(e.g. [17], [7]) that associated with a nonlinear semigroup of contractions

there is a unique (possible multi-valued) operator -A, that A is maximal

monotone, D(A) is dense in H, range (XA+I) = H for any X > 0, and

(AA+I) -1  is a continuous single-valued function.

On the other hand given a maximal monotone operator A we know for every

u0 c D(A) there exists one and only one function u(t) : (0,-) + H such that

u(t) c D(A) ,

du(t) c L[(0,*); HI with

dt

du c 1A0u I
dt 0L1,m;H]

du(t) + Au(t) 3 0 on (O,vo)at

u(O) = u .

Here A0, the minimal section of A, is the function which assigns to each

c D(A) that element of A which has least norm. Furthermore u is right

- differentiable at any t c [0,m) and

d+u(t) = _A0u(t)
dt

for all t c [0,-).

If u and v are solutions associated to initial data u0  and v0

then Iu(t) - v(t)IH  i Ou -v 0 H  for t > 0

-10-



We note by T(t) the extension by continuity of the map u0 c D(A) +

u(t) c D(A) to D(A). If D(A) is dense in H then T(t) defines the

nonlinear contraction semigroup on H "generated" by -A.

The asymptotic behavior of nonlinear contraction semigroups has been

characterized by the following theory of Dafermos and Slemrod [13J.

Theorem 6.1. Let A be a maximal monotone operator on a Hilbert space H.

Assume 0 c range (A) and (AA+I) -1 is compact for some X > 0. Then for

any u0 c D(A) the weak solution of the Cauchy problem

du
Tt + Au(t) ) 0dt

u(0) = u 0

given by u(t) = T(t)u0 approaches as t + a compact subset Q of a

sphere {y; ly-al = r), r < Nu0-al, a e A-1 0. Furthermore Q is minimal,

invariant, and equi-almost periodic under the semigroup T(t) generated by -A

and T restricted to the closed convex hull of a coQ is an affine group of

isometries. If in addition u0 c D(A) then the set n is contained in

D(A), and A0n is compact and lies on a sphere centered at 0. Moreover

con C D(A) and the restriction of A0 to coi is affine.

While the proof is contained in [13] and [7] we note the main idea again

relates back to Theorem 3.1. Recall that we noted after the statement cf

Theorem 3.1 that part (i) of the theorem applied to certain "hyperbolic"

semigroups where we could actually show 0+(,) is precompact. Theorem 6.1

identifies a class of these semigroups as ones arising from nonlinear

contraction semigroups with compact resolvent. The rest of the theorem

essentially follows by identifying the w-limit of Tt) with the aid of the

Liapunov functional 1u(t)1 2 .

I -1r
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7. Application of Theorem 6.1 to the stabilization problem.

In this section we discuss the application of Theorem 6.1 in the special

case E - R. In this case B is a fixed element in H. Furthermore note

that for *, 4 c D(A) that -A-G is monotone. To see this set y = B *,
z B z and observe

(i) for lyiE < r, Izi E r

<-, A + G(O) - A* - G(*)> < -ly-zl 2 ;

(ii) for Py)E > r, IzI E ) r

<#-*, AO + G(4) - A* - G(*)> 4 -r(y-E)- (t- - ( 0

(iii) for ly|E 4 r, Izl E P r,

<*-*,A+ + G(O) - A* - G(*)> 4 -(y-E)(y r

_ 2 + rlyj + Ijy IEI - rI~I

(I I-I)(ItI-Iyl) 4 -(lyl-r) 2

Hence we see that the operator A = -A - G defined on D(A) is monotone.

Notice also that the above argument also shows -G is monotone. Since -G

is continuous (see Section 5) and -A is maximal monotone (by the Hille-

Yosida-Phillips Theorem) a theorem of G. F. Webb [18] asserts that the sum

-A -G is maximal monotone.

Now we are prepared to prove our stabilization theorem.

Theorem 7.1. For each u0 c H there exists a unique weak solution of (5.1),

(5.2) for all t c le with {0} a stable equilibrium of (5.1). If in

addition E - R, (AI-A) -  is compact for all real A > 0, and the only

solution of the equation

B e At -0 for all t c R +

is 4 - 0, then u(t,u0 ) + 0 as t + w for all u0 c H.

Notice here that Theorem 7.1 improves on Theorem 5.1 in that weak

convergence is now replaced by strong convergence. Of course the price paid

-12-
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is that we assume E R and A has compact resolvent.

Proof of Theorem 7.1. We shall apply Theorem 6.1. We have alr3ady shown

- -A - G is maximal monotone and also trivially 0 c range(A). Now let

{}be a bounded sequence in, H with un c D(A) such that

u h

nAun - G(un) + n (7.1)

for A > 0. Take the inner produce of both sides of (7.1) with un  to see

lu12 <u,hn> 4 lu I Ih Inln n n

and hence lu n 1 Ih n. Thus Jun) also belongs to a bounded set in H.

Rewrite (7.1) as

h
- (A - I)u n = + G(u n ) n (7.2)

The Lipschitz continuity of G shows the right hand side of (7.2) lies in a

bounded set of H and the compactness of (A-I)-  for A > 0 shows {un}

lies in a compact subset of H. Thus tX +I)- 1 is compact for all A > 0.

Now let u0 c D(A). Theorem 6.1 tells us u(t) = T(t)u0 , the strong

solution of (5.1), (5.2), approaches as t + -, a compact subset a of a

sphere {yi lyI = r) where n C D(A). Let v0 c Q. Since Q is invariant

we must have IT(t)v 0 I = r for all t e R +, and differentiation with respect

to t and use of (5.1) shows B*T(t)v0 = 0 for t C R+. But (7.4) coupled

with (5.1) and the invariance of n shows T(t)v0 = eAtv0  for v0 c i.•*At+
Hence for v0 c n, B e Atv 0 

= 0 for all t c A*. But by the hypothesis of the

theorem v0 - 0 and n - {01 for u0 c D(A). Since D(A) is dense in H

and T(t) is a contraction the triangle inequality readily shows n - (01

for all u0 e H as well. Since the existence, uniqueness, and stability have

already been prove in Theorem 5.1 the proof is complete.

-13-



8. Examples

8.1. Boundary feedback control of a vibrating beam.

In [3], [4] Hubbard and his co-workers considered the following boundary

control system for a cantilever beam.

Denote by w(x,t) the displacement of the beam where w satisfies

a2 4w
a2 - a4 0 for 0 < x < L
at 2  3x4

awW = 0 for x = 0ax

2 3 .1)
3 w 3w

~~- = +-~ t

ax2 at2ax +

for x= L

a3 w 2aw 2w[

ax3  at2

:!

Here w(x,t) denotes the displacement of a beam and f(t) is an applied

scalar boundary control, If(t)I < r.

In addition we prescribe initial conditions on the displacement and

velocity of the beam,

w(x,O) wo(x) ,

(8.2)

w t(xO) = vo(x) , 0 < x < L

For analytical convenience we rewrite (8.1) in the following first order

form

aw

av a4w

ax
d 3 (8.3)d.a a w

dt ax3  x -L

2
2b . w I + f(t)d" ax 2  Ix -Lr ,

-14-
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where we require a(t) =2 - L b(t) = I 2

a x -L atax x =_L

The above first order formulation motivates us to formally define the

linear operator A

V

A V = 
4

d~w
L x = Ldx 2

so that when

w 0

a0

b 1

(5.3) has the form

duT-t Au + Bf . (8.4)
dt -

To be precise we must identify the domain of definition of A. To this

extent we first define the Hilbert space H:

H - {(w,v,a,b) c H2 (0,1) x L 2(0,1) x R x R

w- w' - 0 at x - 0)

endowed with the inner product

C<~~b,(w,v,a,b) )

(w''(x) ''(x) + v(x)v(x))dx + aa + bb

Now we take the domain of A as



D(A) = f(w,v,a,b) c H (0,1) x H (0,1) x R x R

w - w' - 0, v = v' = 0 at x - 0, v = a, = b at x L}
dx

It is an easy computation to see that <Au,u> is dissipative for

u e D(A). In particular this shows that A is dissipative i.e. <Au,u> 4 0

for u c D(A) or equivalently -A is monotone <-Au,u> > 0 for u C D(A).

We also note that A is an infinitesimal generator of a linear CO

semigroup of contractions T(t) on H. To show this we simply apply the

Lumer-Phillips Theorem [18] which asserts A will be the generator of such a

semigroup if and only if A is dissipative, densely defined on H, and

satisfies the range condition R(-A + XOI) - H for some X0 > 0.

We have already shown A is dissipative and it is a simple observation

to see that it is densely defined. To check the range condition we let

(g,h,c,d) be a generic element of H. Then satisfying the range condition is

equivalent to finding u - (w,v,a,b) c D(A) with

-V + Aow 9 ,(8.5)

4dw ~ f (8.6)

dx

30
dw + AainM c (8.7)

dx x - L

d w I + X b  d (8.8)

dx2 x - L

From the first two of these equations we see w should satisfy

d 4w 2 ~ 0 (8.9) J
dx4

We now solve the ordinary differential equation subject to the boundary

conditions w(O) - 0, w'(0) - 0, and
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d3w + X(w C + X , 18.10)
dx 3  00

d 2w +2 dw8.11)
dx2  0dx 0 + 0 dx

at x = L. Thi3 can be done by explicitly solving (5.9) with four constants

of integration and then using the four boundary conditions to evaluate the

constants. This will yield w c H4 (0,1) with w(0) - w'(0) = 0, which
with v defined by (5.5) and a, b given by a = v(L), b = 2x (L) solve

(5.5)-(5.8). Straightforward inspection of (5.5)-(5.8) also shows u =

(w,v,a,b) is in D(A).

This analysis works for any X0 real. This is no surprise since as we

shall prove the spectrum of A is purely imaginary, discrete, of the form

X ± iP2 where U satisfies the transcendental equation

1 + cosUL coshUL + U(sinhUL cosUL - coshUL sinuL)
3 .4 (8.12)

- U 3(cospL sinhpL + sinpL coshUL) + U 4(1 - cosUL coshUL) = 0

Finally we trivially note that B is a bounded linear operator on the

control space E = R to H. Hence we have rewritten the boundary control

system (8.1), (8.2) in the form (2.1), (2.2). Here the initial data is

w0

u0 a0

and we set (a,a) E aa, a,a c R.

Also since the imbedding of H4(0,1) x H2(0,1) + H 2(0,1) x L 2(0,1) is

compact we see D(A) is compactly imbedded in H. Hence (A - X0 - I is

ccopact for any real A0 .

-17-
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So far we have shown A is the infinitesimal generator of a CO  semi-

group of contractions T(t) on H, (A-AoI)- 1 : H + H is compact. To apply

Theorem 7.1 we must now show B*eAt* - 0, 4 c H, for all t C R+, implies.

- 0. But if B*eAt* - 0 then <Bq, eAt*> = 0 for all q c L- But by the

At A AA

definition of B if we write u(t) e, [w(t),v(t),a(t),b(t)] then

qb(t) = 0 for all q c R and t c R+, i.e. b(t) = 0 for all t £ R So

our goal now is to show b(t) = 0 for all t c R implies 4 = 0.

To do this we shall compute eAt* for 4 c D(A) explicitly. First let

us extend H to the complex Hilbert space H -H iH where H has inner

product << , >>

<<x I + iy 1 , x2 + iY2> =

<xx2 > + <y ,Y2 > - i [<xlY 2 > - <x2 ,yl
> ] •

Then A is also the infinitesimal generator a CO semigroup on

At At R ieAt I
H : e X = e ReX + ImX for X H

The advantage of introducing H is that we can now represent eAtu0 as an

eigenfunction expansion. To this end let u c D(A) so that Au - Au. Then

if we write

w

U a c D(A)
a)

b Ir

u must satisfy

-v + Aw - 0

W" "(x) + Av - 0

-wel + A0 at xinL ?f" + Ab M0
w 0Am

W - O at x 0
and a - Aw(L), b - Aw'(L) since u c D(A). Doing the obvious eliminations

we see w must satisfy
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w""(x) + X2w(x) = 0, 0 < x < L , (8.13)

w - w' = 0 at x = 0 , (8.14)

-wool + X2 w= 0

at x L . (8.15)

A2w,woo + X O

From (8.13), (8.14) we know w(x) is of the form w(x) = C(sin ox -

2
sinhpx) + D(cos px - coshx) where X ± iu 2

. From (8.15) we seen the

additional relations

C(sin UL + sinh UL) + D(cos pL + cosh UL) -

(8.16)

-P 2 {C(cos UL - cosh UL) + D(-sin pL - sinh UL)}

and

C(cos vL + cosh PL) + D(-sin pL + sinh pL) =
(8.17)

V{C(sin uL - sinh UL) + D(cos UL - cosh VL)}

must be satisfied.

Elimination of C and D from (8.16), (8.17) yields the spectral

formula (8.12). For each V satisfying (8.12) the associated C and D are

determined from either (8.14) or (8.17). If we denote the positive solutions

of (8.12) by (Un} then 0 < P1 < 02 <  + + w and the eigenvalues are Xn =

+i n - ,2,...,. n  2 -ip, n = 1,2,3,.... The associated eigenfunctions

are

wn

nwn

Un - for Xn n n - 1,2...

+iuw (L)
n n

+iw(L)

and
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w
n

-iji2Wn

U-n for X-n , n= 1,2...

-i 2w (L)
n n

-ip2Wn(L)

(Here we have used vn = An wn.)

From (8.13), (8.14), (8.15) we find

fL w"Cx)w"(x)dx + X2 fL W (X )dx + 2 [ww +w w ] =0 (8.18)
0"xw"xd nX~J Xm Ew0 + m n m x=L

Now interchange m and n in (8.18) and take the difference of the two

equations. This will show that

fL w (x)wm(x) + [w w + ww 0 ,0f n m n m Wnm] x=T.

if m n (8.19)

fL w"(x)w"(x)dx = 0 }
If we set m = n (8.18) we see as well that

fL w"(x)2dx = U w2(x)dx + w2 + w2 ]  (8.20)

n n 0 n n n xL
From (8.19) we see that <UnUm = 0 if m # n and Imi Inl and from

(8.20) we see <<UnU n>> = 0 as well, n = 1,2,.... Hence {un}, n =

±1,±2,... of eigenfunctions forms an orthonomal set in H. It is easy to

show it is complete as well. Furthermore we assume it is normalized so that

<<UnUn 1. Hence if u0 c D(A) C H

e At f- cent (8.21)

nm0

where the {cn} are complex coefficients satisfying

c <<u 0 ,un>>, n= ±, ±2,... (8.22)
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Since un = un, X = Xn, (where the overbar denotes complex

conjugation) we can write (8.21) as

D Xt G -t

u(t) = c e u + c e u
n n1 -n nn=1i n=1

Because u0  is real we must have c = c_n as well and

- ij2t

u(t) = 2 Re c e u . (8.23)
Icne n

n-i

As advertised earlier our condition B*eAt = 0 for all t C R+ is

equivalent to the fourth component b(t) = 0 for all t c R+ If we write

Cn - an + i~n and use (8.23) this means for all t c R that

2(a sin u2t + n cos Unt) 2Wn(L) = 0 . (8.24)
n-1 n n l n n

The left hand side of (8.24) defines an almost periodic function and hence by

the uniqueness theorem for almost periodic functions [19] the coefficients

mush vanish, i.e.

2 w'(L) = 0
nun n

n- , 2,... (8.25)
2 w'(L) = 0Bn ln n

. From the spectral relation (8.12) we know n 0. Furthermore (8.13)-

(8.15) when coupled with w; - 0 at x = L force w 0. But thisn n

contradicts the un  being eigenfunctions so we know wn'(L) # 0. Hence (8.25)

implies an -
8n 0, i.e. iJ, 0. We can now apply Theorem 7.1 to conclude

the following result.

Theorem 8.1. Consider the control system (8.1)-(8.2). Then feedback control
f(t) - -r sgn w (L,t) for 1W (L,t)l ) r

tx tx

M -w tx(Lt) for W tx(L,t)l < r
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yields a unique weak solution to (8.1), (8.2) for initial data (woVora,b)

in H {(w,v,a,b) < H2(0,1) x L2(0,1) x R x R; w = w' = 0 if x - 01. In

addition the zero solution of (8.1) is uniformly asymptotically stable in H.

Proof. Observe that u = (wv,ab), B u = Wtx (L,t). So use of Theorem 7.1

and the definition of uniform asymptotic stability gives the result.

Notice that Theorem 5.1 also applies in this case since B is compact.

However as noted earlier Theorem 7.1 yields the stronger result in that

convergence to the zero equilibrium solution is in the strong rather than weak

topology.

8.2. Boundary control of the NASA Spacecraft Laboratory Control Experiment (SCOLE)

An example where Theorem 5.1 applies and Theorem 7.1 does not is provided

by the stabilization problem for the NASA Spacecraft Laboratory Control

Experiment (SCOLE). Since the details of the mathematical model (which are

very lengthy) are provided in the papers of Balakrishnan [5) and Balakrishnan

and Taylor [6] we only sketch the main ideas here.

First we quote from [5] for a description of the physical problem.

"The physical apparatus consists of a softly supported antenna

attached to the space shuttle by a flexible beam like truss. The control

objective is to slew the antenna on command within the given accuracy and

maintain stability, based on noisy sensor data and limited control

authority; allowance must be made for random disturbance. The control

forces and torques are applied at the shuttle end as well as the antenna

end and in addition provision is made for a small number of z-axis proof-

mass activators along the beam."

-22- 1
I]



In (5] Balakrishnan shows that in the absense of noise the problem can be

reformulated in the form (5.6) where H = (L2 (0,L))
3 X R 14 , <Au,u> 0,

<Q(u),u> = 0, E - R'0 , and B'eAt = 0 for all t c k+ implies = 0. So

the Corollary to Theorem 5.1 implies the zero solution is stable and

furthermore u(t,u0 ) + 0 as t + - for all u0 c H. So the feedback control

law f(t) = K(u(t)) provides a "weakly" damping resolution of the SCOLE

problem under the constraint f E r. Of course since E = R10 and not R

Theorem 7.1 does not apply.
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